Assessment of Forearm Rotational Control Using Four Upper Extremity Immobilization Constructs

Ayesha M. Rahman, MD, MSE¹, Nicole Montero-Lopez, MD¹, Richard Hinds, MD¹, Michael Gottschalk, MD¹, Eitan Melamed, MD¹, John T. Capo, MD¹

Department of Orthopedic Surgery, NYU Hospital for Joint Diseases

Disclosures: no conflicts of interest

OBJECTIVES

- •Forearm immobilization techniques are commonly used in the management of distal radius, scaphoid, and metacarpal fractures.
- •The purpose of our study was to compare the degree of rotational immobilization provided by a sugartong splint (STS), short arm cast (SAC), Munster cast (MC), and long arm cast (LAC) at the level of the distal radioulnar joint (DRUJ), carpus, and metacarpals.

Figure 1. En-face view of a cadaveric upper extremity specimen demonstrating external fixation construct with sugartong immobilization, K-wire pin fixation through the scaphoid (white flag), distal radius (blue flag) and metacarpals (unmarked).

METHODS

- •Seven cadaveric upper extremity specimens were mounted to a custom jig with the ulnohumeral joint fixated in 90° of flexion and the humerus and ulna rigidly fixed (Figure 1).
- Supination and pronation of the radius were unrestricted. K-wires were placed in the distal radius, scaphoid, and metacarpals under fluoroscopic guidance to measure the total arc of motion (supination to pronation) referenced to the ulnar exfix pin.
- Baseline measurements followed by sequential immobilization with well-molded STS, SAC, MC, and LAC were obtained with 1.25 ft-lbs, 2.5 ft-lbs, and 3.75 ft-lbs of supination and pronation force directed through the metacarpal K-wire. Each immobilization technique was tested three times.
- Digital photographs taken perpendicular to the ulnar axis were used to analyze the total arc of motion.

RESULTS

- •Significant differences in rotation among the four immobilization constructs were found at the level of the DRUJ (P < 0.001), carpus (P < 0.001), and metacarpals (P < 0.001) for all deforming torques (1.25 ft-lbs, 2.5 ft-lbs, and 3.75 ft-lbs).
- The most effective constructs in order of greatest to least rotational control were LAC, MC, SAC, and STS.
- Circumferential constructs (SAC, MC, LAC) were superior to the non-circumferential construct (STS).
- Above-elbow circumferential constructs (MC, LAC) demonstrated superior immobilization compared to below-elbow constructs (SAC).
- There were no significant differences in rotational control between the MC and LAC in any conditions tested.

Table 1. Total arc of motion allowed by immobilization constructs under 1.25 ft-lbs of deforming torque.

	Sugartong Splint	Short Arm Cast	Munster Cast	Long Arm Cast	P Value
DRUJ	21.2°	17°	4.3°	2.8°	<0.001
Intercarpal	30.6°	19.9°	7.7°	5°	<0.001
Metacarpal	43.9°	27.2°	17.8°	18.8°	<0.001

Table 2. Total arc of motion allowed by immobilization constructs under 2.5 ft-lbs of deforming torque

Table 21 Total and 61 motion allowed by immobilization contentation and 2.0 it is 61 actioning torque.							
	Sugartong Splint	Short Arm Cast	Munster Cast	Long Arm Cast	P Value		
DRUJ	38°	27.9°	5.4°	3.8°	<0.001		
Intercarpal	53.4°	32.2°	10.3°	8.5°	<0.001		
Metacarpal	72.9°	45.3°	26.4°	25.6°	<0.001		

Table 3 Total arc of motion allowed by immobilization constructs under 3.75 ft-lbs of deforming torque

	Sugartong Splint	Short Arm Cast	Munster Cast	Long Arm Cast	P Value
DRUJ	54.2°	38.8°	6.2°	4.2°	<0.001
Intercarpal	74.8°	47.4°	14.3°	13.7°	<0.001
Metacarpal	100.3°	65.2°	32.4°	32°	<0.001

Abbreviations: DRUJ, distal radioulnar joint

CONCLUSIONS

- Both circumferential and proximally extended immobilization independently provide improved rotational control of the wrist.
- Extending immobilization proximal to the elbow does not confer additional stability.
- Munster cast provides similar rotational control as a long-arm cast, thus allowing the extremity some degree of flexionextension motion.