Minimal Changes in Wrist Motions After Simulated Scapholunate Arthrodesis

Kevin D. Han MD, Jaehon Kim MD, Michael V. Defazio MD, Ryan D. Katz, MD and Kenneth R. Means MD
Curtis National Hand Center, Medstar Union Memorial Hospital, Baltimore, MD

Objectives
◆ Scapholunate Interosseous Ligament (SLIL) instability represents a common clinical problem
◆ High incidence of nonunion and poor outcomes with prior fixation techniques
◆ Evaluate SL fusion as a plausible procedure for SL instability
◆ Establish the effect of simulated SL arthrodesis with modern fixation techniques on wrist motions in a cadaveric model

Methods
◆ Ten cadaveric wrists were tested in wrist joint range of motion simulator
◆ Wrist range of motion was simulated with five-pound weights sutured to wrist tendons (Six Motions)
◆ Scaphoid was exposed radially, capsulectomy with no styloectomy
◆ Two 3.0 mm headless compression screws placed across SL joint to simulate fusion
◆ Goniometric measurements and fluoroscopic images were obtained for each range of motion both before and after simulated SL fusion
◆ The paired t-test was used to compare wrist motions before and after arthrodesis

Results
◆ Appropriately positioned and rigid simulated SL fusion were verified under fluoroscope and a consistent SL angle (47° ± 6° vs. 46° ± 4°, p=0.37, pre and post fusion, respectively)
◆ The SL angle did not change throughout range of motion testing after screw insertion, confirming simulation of rigid SL fusion
◆ The only statistically significant decreases in wrist range of motion following simulated SL fusion occurred during maximum flexion, dart thrower’s flexion, and dart thrower’s extension:
 1. Wrist flexion decreased 9° on average
 2. Dart thrower’s flexion decrease 6° on average
 3. Dart thrower’s extension decreased 9° on average

Conclusion
◆ SL arthrodesis has been attempted in the past
◆ Range of motion after simulated SL fusion (84-100%) compares favorably to reported range of motion outcomes SL repair or reconstruction procedures
◆ Decreases in wrist flexion and dart thrower’s extension and flexion following simulated SL fusion are of questionable clinical significance given the relatively small effect size

<table>
<thead>
<tr>
<th>Position</th>
<th>Intact Wrist</th>
<th>SL Arthrodesis</th>
<th>%</th>
<th>P-value</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Flexion</td>
<td>80 (5)</td>
<td>72 (6)</td>
<td>90</td>
<td>0.0001</td>
<td>6.61-11.39</td>
</tr>
<tr>
<td>Max Extension</td>
<td>59 (8)</td>
<td>54 (14)</td>
<td>92</td>
<td>0.22</td>
<td>-3.27-12.47</td>
</tr>
<tr>
<td>Max Radial Deviation</td>
<td>52 (9)</td>
<td>51 (13)</td>
<td>98</td>
<td>0.89</td>
<td>-8.54-9.74</td>
</tr>
<tr>
<td>Max Ulnar Deviation</td>
<td>45 (15)</td>
<td>45 (7)</td>
<td>100</td>
<td>0.90</td>
<td>-11.29-1.09</td>
</tr>
<tr>
<td>Max Dart Thrower’s Ext</td>
<td>57 (9)</td>
<td>48 (8)</td>
<td>84</td>
<td>0.0001</td>
<td>6.11-10.89</td>
</tr>
<tr>
<td>Max Dart Thrower’s Flex</td>
<td>76 (11)</td>
<td>70 (11)</td>
<td>92</td>
<td>0.0003</td>
<td>3.78-8.82</td>
</tr>
</tbody>
</table>

Acknowledgement
◆ Sione Fanua, MSM
◆ Brent Parks, MSc
◆ Michael Tsai, BS
◆ Norm Dubin, PhD

References