Chronic Scapholunate Instability
David S. Zelouf, MD
The Philadelphia Hand Center

I. Kinematics
 a. Proximal row has no direct tendinous attachment and thus is an intercalated segment
 b. Scaphoid has a tendency to flex due to trapezium, trapezoid and capitate
 c. Triquetrum has a tendency to extend due to helicoid articulation with hamate
 d. Lunate is “balanced” by normally intact SL & LT interosseous ligaments
 e. When the wrist moves from radial to ulnar deviation, the proximal row extends
 f. When the SL ligament is incompetent, the scaphoid flexes and the lunate/triquetrum extends (assuming LT ligament intact) = DISI

II. Classification of carpal instability
 a. Chroncity
 i. Acute: <1 week (optimal healing potential)
 ii. Subacute: 1-6 weeks (deformity still easily reducible but ligaments may have reduced healing potential)
 iii. Chronic: >6 weeks (possibility of achieving an acceptable reduction and primary ligament healing much less likely)
 b. Constancy
 i. Predynamic
 ii. Dynamic
 iii. Static reducible
 iv. Static irreducible
 c. Location
 i. Radiocarpal
 ii. Proximal and distal intercarpal
 iii. Metacarpal
 iv. CMC
 d. Etiology
 i. Traumatic
 ii. Atraumatic
 e. Direction
 i. DISI
 ii. VISI
 iii. Ulnar translocation
 iv. Dorsal translocation
 f. Pattern
 i. Dissociative
 ii. Non-dissociative
III. Spectrum of SL instability
 a. Stage I
 i. Partial SL ligament injury or “stretched” ligament
 ii. Intact critical dorsal SL fibers
 iii. Normal x-rays
 iv. May cause local synovitis and pain
 v. “Predynamic”
 b. Stage II
 i. Complete SL ligament injury but repairable
 ii. Typically carpal alignment is normal
 iii. “Secondary stabilizers” (ST ligament and DIC ligaments) intact
 iv. No rotatory subluxation
 v. No significant SL gap
 vi. “Dynamic” instability
 c. Stage III
 i. Complete SL injury
 ii. Non-repairable dorsal ligament and poor healing potential
 iii. Secondary stabilizers still intact
 iv. Increased SL gap under load/stress films
 v. Still considered “dynamic” instability
 d. Stage IV
 i. Complete SL injury
 ii. Secondary stabilizers NOT intact
 iii. “Rotatory subluxation” of the scaphoid
 iv. Reducible mal-alignment
 v. “Clunking” secondary to self-reduction of the subluxation common
 e. Stage V
 i. Chronic state with complete SL injury and loss of secondary stabilizers
 ii. Fibrosis results in irreducible carpal malalignment
 iii. Normal cartilage
 f. Stage VI
 i. Long standing carpal malalignment with irreducible scaphoid subluxation
 ii. Degenerative changes ensue (SLAC)
 g. Acute typically stage II, while chronic stages III-VI

IV. Chronic SL instability
 a. >6 weeks
 b. Static reducible vs. static irreducible
 c. Proximal row
 d. Traumatic
 e. DISI
 f. Dissociative
V. Clinical presentation
 a. Pain, especially with heavy use
 b. Weakness
 c. “Giving way”
 d. “Clunk, snap or click” with use/load
 e. Reduced motion

VI. Physical examination
 a. Swelling typically absent due to chronicity
 b. SL tenderness
 c. Watson’s test (wrist passively moved from ulnar to radial deviation with
dorsal directed force over scaphoid tubercle, pain + “clunk” (high false +)

VII. Diagnostic workup
 a. Bilateral clenched fist AP films (look for asymmetric SL gap), true co-
linear lateral and “clenched pencil view” (taken in pronation with pencil or
dowel gripped with both hands simultaneously on same xray)
 b. High resolution non-contrast MRI using a dedicated wrist coil
 c. Cine study or in office fluoroscopy with ulnar to radial deviation and wrist
flexion/extension
 d. Wrist arthroscopy to evaluate cartilage and remainder of wrist joint, LT
ligament and TFCC

VIII. Treatment
 a. Depends upon stage
 i. In stage II chronic cases, SL repair with or without capsulodesis
 with temporary kirschner wires or temporary SL screw fixation
 ii. In stage III chronic cases with non-repairable SL ligament and
dynamic instability:
 1. Dorsal capsulodesis
 2. Soft tissue reconstruction of the dorsal SL ligament (?)
 3. Bone-ligament-bone grafts (?)
 4. “Three-ligament tenodesis” (Modified Brunelli)
 iii. In stage IV chronic cases with non-repairable SL ligament and
static (but reducible) instability:
 1. Three-ligament tenodesis
 2. “RASL” procedure: reduction-assn. of the SL joint (?)
 3. “SLIC” screw(?)
 4. SL reconstruction using the Arthrex SL axis method
 (SLAM) (?)
 iv. In stage V chronic cases with non-repairable SL ligament and
static (and non-reducible) instability with intact cartilage a salvage
procedure is indicated:
 1. STT fusion
 2. SC fusion
 3. SLC fusion
4. RSL fusion + distal scaphoid excision (preserves MC joint)
5. Scaphoid excision and midcarpal fusion (SLAC with MC involvement = SLAC 3)

b. All treatment options have variable success rates, and typically result in some loss of wrist motion and grip strength

Bibliography

