Finger Dislocations and Ligament Injuries:
Finger MCP and PIP

David G Dennison, MD
Mayo Clinic
AAHS 2015 Review Course

Disclosure – Research grant money received from DePuy
No material within this presentation is related to any industry support.

1. MCP Joint Anatomy

Condyloid joint – Multi-planar motion
MC head – cam shaped; base of P1 shallow concave
MCP immobilization should be in flexion to prevent loss of flexion from tight collateral ligaments
Volar plate
Weaker dorsal capsule
Ligaments
Proper collateral (PCL)
Accessory Collateral (ACL)

A1 pulley – directly volar to VP
Sagittal bands – attach to VP
2. MCP Dislocations, Fracture Dislocations and Ligament Injuries

Goals
- Identify injury immediately
- Don’t make a reducible MCP joint irreducible by incorrect reduction
- Minimize or avoid complications of injury and surgery

Background
- Fractures may be present in 50% of dislocations
- Complications: Stiffness, AVN, arthritis, pain

Definitions: Simple versus Complex Dislocations
- Simple – reducible with closed reduction
- Complex – requires operative reduction, usually due to trapped VP

Dorsal Dislocation (more common)
- Mechanism – Hyperextension of MCP joint

![Hand X-ray](image.png)

J Am Acad Orthop Surg 2009;17:318-324

Simple MCP Dislocation
- **Volar plate torn but P1 remains in contact with MC head**
- No interposed tissue, hyperextended joint

Reduction (with anesthesia – local, sedation)
- **No traction – this may trap the volar plate and may convert a simple dislocation to a complex dislocation**
- **Wrist and PIP flexed – relax flexor tendons**
- **Slide P1 (dorsal to volar) and flex MCP**

Post-reduction
- Radiographs to confirm concentric reduction
- Dorsal blocking splint is usually sufficient
- Assess lateral stability in flexion
 - Rarely need to repair collateral ligament
 - (May occur with rotational injuries)
Complex MCP Dislocation

Volar plate now interposed within MCP joint
P1 dorsal to MC, volar plate now dorsal to MC head
Parallel alignment of MC-P, volar skin dimpling
Sesamoid seen within the joint is pathognomonic

J Am Acad Orthop Surg 2009;17:318-324

MC head may also be trapped in volar palm structures:
- FDP
- Lumbrical
- Natatory and superficial transverse MC ligament
This also brings the NV bundle closer to the skin

Biomechanical cadaver study indicates it is usually the volar plate that traps the joint and not the palmar “noose” described by Kaplan. (Afifi et al, JHS 2009 34A:1506-1511)

Open Reduction – Dorsal, Volar or combined
- **Dorsal Approach** (e.g. Farabeuf)
 - Dorsal midline incision
 - Longitudinally divide the volar plate
 - Reduce the MCP joint
 - Inspect the articular surfaces
 - ORIF/Debride osteochondral fragments
 - Assess stability
 - Safe – away from displaced volar digital nerve
 - Cannot reach other volar structures
Volar Approach (e.g. Kaplan)
Allow access to other volar structures
Can see and divide the volar plate as well
Digital nerve is closer to skin and at risk
Cannot complete ORIF of osteochondral fx
Limited view of reduced articular surfaces
Volar MCP Dislocation (less common)

Mechanism - Hyperextension and hyperflexion described

Simple Dislocation
Dorsal capsule torn and may be interposed in joint

Complex Dislocation
Other structures may interfere:
- Extensor tendons
- Distal volar plate/collateral ligaments
- FDI

Closed reduction
Volar to Dorsal translation of P1 on the MC head
Begin with Flexed MCP and then Extend MCP

Open Reduction
Fewer reports of which direction is best for approach
Dorsal allows inspection of the joint, repair of capsule and extraction of extensor tendon or ligament
Volar allows access to volar plate

3. Finger MCP Collateral Ligament Injuries

Avulsions – Origin or insertion
Avulsion fractures – Usually one volar “corner” of base of proximal phalanx
Displaced fx (intra-articular) may develop pseudo-arthrosis or nonunion

Border digits common
Index and small finger

Physical Exam
Test in flexion of MCP for stability in radioulnar deviation
May find rotatory instability or subtle malrotation of fingers

Radiographs
3 views and Brewerton view may identify fractures
May see volar subluxation of P1

Treatment

Conservative

Partial tears or suitable endpoint to deviation stress
More likely to try conservative for LF and RF;
buddy taping is possible to adjacent finger

Operative

Large /displaced avulsion fractures
Open repair – ORIF
Percutaneous fixation
Arthroscopically assisted repair
Volar approach (Brunner over A1)
Also good for access for reduction/fixation

Unstable Ligament rupture/avulsion
Dorsal approach
Suture repair
Suture anchors work well
Many reports of good-excellent outcome with repair

4. Locked MCP joints

MCP joints can be locked in flexion, usually Index and Long
Often presents as “trigger finger” referral after stuck for some time.
Except – PIP has full motion

Two patient types:
1. Osteoarthritis (usually “older”)
 Ligament caught over osteophyte; often Long finger
 Osteophyte often visible by Brewerton view
 Treatment - often open release
 Dorsal Approach
 Good visualization
 May reduce ligament around osteophyte or débride osteophyte etc.

 Volar Approach
 Access to volar plate and volar ligament insertion
 May be difficult to see dorsally due to flexed joint

2. Younger patients
 Considered to be a soft tissue redundancy that traps
 (usually) the radial collateral ligament of the index finger
 Closed reduction advocated (with and without anesthesia)
 Begin with hyperflexion, radial deviation, supination and then extension
5. PIP Joint Anatomy

Bicondylar joint; 110 degrees of rotation 8-11 degrees of pro-supination
Significant stability from articular surfaces with flexion/grip/grasp
Ligaments (similar to MCP)
 Proper Collateral
 Accessory Collateral
 Volar plate – strong insertion at lateral edges of P2

Transverse Retinacular ligament
Central slip of extensor mechanism

6. PIP Dislocations - Dorsal, Volar and Lateral

Dorsal (P2 dorsal to P1)
 Most common
 Mechanism – usually Hyperextension, may have axial load too
 Eaton described 3 types:

I Volar plate avulsion fracture off base of P1

Tx- buddy taping and early motion

II Dorsal dislocation
 Tx – Digital block, traction and reduction
 Check stability
 Radiographs to confirm concentric reduction
Extension block splinting and edema control
Initiate flexion as soon as possible (pain/swelling)
Progress towards full extension weekly
Make progress towards full extension to avoid the common complication of PIP flexion contracture

IIIA Dorsal Dislocation With P2 base fx (stable)
Fracture <40% - still congruent articular joint dorsally
Requires flexion (extension-block splinting) to prevent recurrent dislocation
 Historically – Schenck dynamic traction splint
 – large device, bulky

IIIB Dorsal Dislocation With P2 base fx (unstable)
Fracture >40% - joint dislocates, inadequate stability
Require surgical reduction and stabilization:
No high powered studies to direct optimal treatment
But, most less invasive treatments yield good results if concentric reduction with motion is achieved early.

Surgical options:
 Extension block pinning
 Trans-articular pinning
 3 weeks, < 40° (Newington)
 Force-Couple (e.g. Image: Agee, CORR 1987)
 Dynamic Traction (e.g. Suzuki, Slade)
 Compass Hinge (e.g. Hotchkiss)
 ORIF with large fragments only (screws, cerclage)
 Dorsal or Volar approach
 Volar shotgun approach for cerclage or lag
 Volar plate arthroplasty
 Volar approach
 Resection of collateral ligaments
 Advance distal VP into P2 base
 Reliable results?
 Hemi Hamate reconstruction
 Good early results
 Technically more difficult/learning curve
P2 base Pilon Fractures – result from more axial load

Difficult injuries –
Complications include arthritis and stiffness
Soft tissue stiffness - major complication of open reduction
Need to maintain congruent surfaces and initiate motion

Results are equal or better for Dynamic traction
compared to percutaneous fixation or ORIF

Force-Couple is not applicable for pilon fractures as it does not distract the joint.

Volar Dislocations – Less common

Pure volar dislocations
Central slip injured with volar dislocation
Treatment : closed reduction
If stable → PIP extension splint 6 wks w/ active DIP motion
If unstable or with dorsal P2 fracture – may require repair
Dorsal P2 fx – ORIF, Perc or Extension block pinning

Volar rotatory dislocation
Mechanism - P2 spins on remaining intact ligament
Condyle ruptures between central slip and lateral band
Closed Reduction - requires rotation as well to reduce
 MCP and PIP flexion assist with reduction of
 condyle from soft tissue and then joint reduction
Open reduction may be required through a dorsal or midaxial incision
Central slip/extensor mechanism inspected/repaired
Post reduction splinting – PIP extension with DIP motion

Lateral Dislocations
Mechanism – Deviation of joint with rupture of one collateral ligament and volar plate
Treatment – Reduction, most by closed maneuver
Radiographs of joint to confirm concentric reduction

Look for joint incongruity = trapped soft tissue/bone
Rarely requires open reduction for trapped ligament
Midaxial or dorsal incision
Stiffness is much more common than instability
Ligament repair is rarely required
Perhaps with more chronic instability

Chronic or subacute PIP dislocations
May attempt open reduction if no arthritis
May consider:
Volar Plate Arthroplasty
Hemi-hamate reconstruction
PIP fusion
PIP Arthroplasty?
References:

27. Ikeda M; Ishii T; Kobayaski Y; Mochida J; Saito I; and Oka Y: Percutaneous pinning of the displaced volar plate avulsion fracture of the PIP joint. Hand Surg, 14: 113-9, 2009.

Metacarpal and Phalangeal Fractures

David G Dennison, MD
Mayo Clinic
AAHS 2015 Review Course

Introduction

Metacarpal Fractures
- 30-40% of hand fractures, most common 5th MC neck (young male)

Phalangeal Fractures
- Feehan and Sheps:
 - 50% of hand fractures were phalangeal fractures
 - Male 2:1, especially in patients 15-40 y/o
 - Women are more likely to have hand fractures when >65 y/o

Treatment Principles and Background
- Fracture pattern and soft tissue injury varies with mechanism
- “Injury” films - assess the instability of the fracture
- Displaced fractures can be unstable even when the reduction looks good….
 - Initial deformity – best measure of instability.
- Outcome - proportional to the volume or severity of the injury
- Proximal phalanx, comminuted fractures and fractures with soft tissue injuries have worse outcomes
- Goals of operative reduction and fixation are to:
 - Provide sufficient stabilization
 - Minimize pain
 - Allow early motion
 - Minimize stiffness.
 - Limit dissection and soft tissue injury, keep hardware countersunk and not too close to the joint to minimize stiffness
- Facilitate motion by 4 weeks
- Postoperative evaluation, monitoring and therapy are critical in most cases

Fracture types in general
- Transverse, oblique, spiral, comminuted
 - Open, closed, contaminated, soft tissue injury, bone loss
 - Pediatric fractures
 - Thicker periosteum – more soft tissue stability
Metacarpal and Phalangeal Fractures: Functional Anatomy, Mechanics and Deformity (Excluding the thumb)

- **Functional Anatomy**
 - Radial side of the hand is rigid through the CMC
 - Ulnar side has more motion through the CMC joints
 - 20-30 degrees
 - Transverse arch to hand and carpus

- **Mechanics and Deformity** – Intrinsic, flexor and extensor muscle forces produce angular deformities

- **Metacarpal Shaft**
 - Intrinsic muscles produce an apex dorsal angulation; intermetacarpal ligament and interosseous muscles may limit shortening and malrotation
 - Rotation of 5 degrees = 1.5 cm of potential overlap

- **Proximal Phalanx (P1)**
 - Typically transverse fractures result in APEX VOLAR angulation as a result of the flexion force of the intrinsic muscle insertion on the base of the proximal phalanx and the extension force of the central slip across the PIP joint and distal portion of the proximal phalanx.
 - Extension lag - as much as 12 degrees for every 1 mm of shortening in the proximal phalanx
 - Oblique or spiral fractures may penetrate through soft tissue limiting closed reduction

- **Middle Phalanx (P2)**
 - Midshaft P2 fractures - variable presentation
 - Distal 1/3 fractures - apex volar as the FDS flexes the shaft of P2 and the extensor tendon extends the distal P2.
 - Proximal P2 fractures - result in apex dorsal deformity if proximal to the FDS insertion due to the extension from the central slip and flexion of the FDS

- **Distal Phalanx (P3)**
 - Few forces cross the tuft
 - Growth plate or base of P3 injuries may be unstable
 - some result in flexion (apex dorsal) deformity
 - e.g. Seymour fracture
Extra-articular Metacarpal and Phalangeal Fractures (excluding the thumb):

- **Metacarpal Shaft**
 - Acceptable alignment:
 - No clinical malrotation
 - Index and long – less than 10 degrees
 - Ring and small – less than 20 degrees
 - Shortening of 2mm = 7 degrees of extension lag,
 - may tolerate 3-4mm of shortening
 - Closed treatment –
 - Cast immobilization, MP flexed, IP free; duration 3-4 weeks
 - Frequent checks with X-rays
 - Operative treatment
 - Percutaneous Kwires (transverse, longitudinal, oblique) or transverse Kwire into adjacent intact MC shaft works well
 - IM nail – works well but less anatomic restoration of alignment
 - ORIF
 - Oblique or spiral fractures - lag screws or compress fracture and place a position screw
 - Plate with lag screw has increased rigidity
 - Transverse or comm. – plate dorsal or lateral
 - Tension band or intraosseous wiring also useful
 - Ex Fix – certain role with severe soft tissue injury, infection or loss of bone
 - Kwires with small systems (ie Hoffman phalangeal Ex fix)
 - Syringe with PMMA works well too

- **Metacarpal Neck**
 - Acceptable Alignment
 - No clinical malrotation
 - Angulation (not to exceed):
 - Index 10-15 degrees
 - Long 10-15 degrees
 - Ring 30-40 degrees
 - Small 40-50 (60+) degrees
 - Closed treatment
 - Reduction and cast application with a good three point mold
 - Historically by Jahss maneuver MP and PIP flexed..
 - The maneuver is good; the position for any period of time is bad!
 - I use a Beckenbaugh cast which is applied while the finger is in a finger trap with longitudinal traction and a cast with 3 pt mold is applied with the MP extended and the PIP free for about 3-4 weeks
 - Close F/U
Operative Treatment
- Any wound that may communicate with the joint should be explored, débrided and irrigated; “fight bites” should not be missed.
- Closed reduction and K wire fixation is usually acceptable
- Open treatment for unstable, irreducible fractures
 - K wires, condylar blade plates, screws

Metacarpal Base
- Usually involves the 5th CMC
- Look for injury at adjacent CMC
 - 30 degree Pronated AP and Lateral and/or CT
- Closed treatment – nondisplaced: short arm cast
- Displaced articular fractures or unstable CMC joint – deserve reduction and fixation, especially the 5th

Phalangeal Shaft
- General operative indications:
 - Displaced fractures with malrotation, angulation or excessive shortening
 - Guide: any malrotation, angulation > 10 degrees, shortening > 2 mm, apposition <50%
 - Distal phalanx with unstable fracture and nail matrix injury
 - Multiple fractures in the same hand, finger, extremity, or with polytrauma
 - Open fractures or replantation
- Closed treatment includes casting/splinting with MP flexed and IP joints extended. Initiate motion as swelling subsides and callus and stability are present.
 - Frequent f/u
 - If you use less than a cast - you need a cooperative patient….
- Operative Treatment
 - Closed reduction, perc pinning is mainstay, K wire reduction forcep is a valuable tool
 - CR/IF an option as well as ORIF
 - Plates: P1 – lateral better than dorsal regarding finger stiffness
 - P2 rarely plate..tendon scarring
Intra-articular Metacarpal and Phalangeal Fractures (excluding the thumb):

- **Metacarpal Head**
 - Good imaging is a necessity to make a good plan
 - Brewerton views
 - CT scan
 - Plan approach accordingly
 - Nondisplaced
 - Cast with MP flexed, close f/u
 - Displaced intra-articular fractures
 - ORIF (large fragments)
 - Arthroscopic assisted reduction and percutaneous fixation
 - Keep in mind - distal fractures have higher rate of osteonecrosis

- **P1 Base**
 - Unicondylar or avulsion fractures
 - Nondisplaced – cast with/without buddy tape
 - Displaced fractures may lead to nonunion or pseudoarthrosis and instability
 - Closed versus open reduction
 - K wire fixation is satisfactory, screws and cannulated screws have been used with success
 - Unicondylar
 - Midaxial approach, dorsal for direct visualization of joint surface
 - Avulsion fracture (typically volar fragment):
 - Arthroscopic reduction and fixation reported
 - Volar approach through or around A1 pulley
 - Bicondylar fractures
 - Similar indications
 - Dorsal or lateral approach to MP joint
 - Blade plate (lateral) may be helpful

- **P1 Head**
 - Unicondylar or bicondylar
 - Nondisplaced – cast/splint intrinsic plus – WATCH CLOSELY
 - Displaced fractures
 - Attempt closed reduction with K wires and compression clamp, threaded K wires can help hold the reduction.
 - Articular reduction may require open reduction and screw, Kwire, threaded Kwire or tension band fixation. Bicondylar may benefit from blade plate.
 - Better joint motion when the hardware is kept away from the joint and periarticular tissues
P2 Base

- Volar plate avulsion fractures
 - Follows hyperextension or dorsal dislocation:
 - Goal - Maintain congruent reduction
 - Extension block splint with ACTIVE flexion
 - Good for smaller fragments with congruent joint
 - Force couple (eg: Agee)
 - Useful for reduction of joint subluxation
 - ORIF
 - Rarely– volar approach and ORIF with large fragment and coronal fracture plane
 - Volar plate arthroplasty
 - May help manage comminuted volar fragments and later reconstruction
 - Hamate osteochondral autograft
 - Reconstruct the volar lip

- Central Slip Avulsion Fractures
 - Nondisplaced fractures – splint PIP in extension, mobilize DIP
 - Displaced fractures
 - Closed reduction, percutaneous fixation
 - Extension block pinning versus direct fixation of fragments
 - ORIF for large fragments

- Pilon type
 - Difficult problem regardless of the method used to treat
 - Min/Nondisplaced
 - Early ROM, close F/U
 - May choose to unload the joint as well (see below)
 - Displaced
 - Dynamic Ex Fix with distraction close f/u and PIP ROM
 - Closed reduction and perc pins
 - Compass hinge
 - Schenk splint
 - Early ROM
 - Rare….ORIF

- Mallet Fracture
 - Closed treatment with DIP full time extension
 - For smaller fragments with a congruent joint
 - Check extension splint films for joint and fracture alignment
 - 6 weeks with ACTIVE PIP motion, then 6 weeks PM splint
 - Closed reduction, extension block pinning –
 - For large displaced fragments (40-60%) of joint
 - Joint subluxation
 - Rarely ORIF, higher complication rate
The Thumb: Metacarpal and Phalangeal Fractures

- Thumb
 - P1 and P2 fracture indications and treatment are similar to fingers
 - Metacarpal extra-articular shaft fractures
 - Tolerate 20-30 degrees of angulation
 - Slight malrotation may be acceptable due to motion at Thumb CMC joint
 - CR/PF when practical
 - ORIF for comminuted, displaced, unstable fractures
 - EPL/EPB interval for dorsal approach to Th MC
 - Plates, screws, K-wires, condylar blade plates and 2 mm locked plates are available for fixation
 - Intra-articular base of thumb metacarpal fractures
 - Need good imaging
 - Robert’s view: (AP) of Thumb MC-Trapezial joint
 - Bennett Fracture – most common
 - APL pulls thumb MC proximal, volar oblique ligament intact and attaches to the remaining small volar bone fragment
 - Reduction requires traction, depression of the base of the metacarpal (extension) and pronation
 - K wires fixation may be from Th MC to Tzm and/or Index MC – does not have to pass through the small volar fragment as long as the fracture is reduced and stabilized
 - May be assisted by thumb CMC arthroscopy or open reduction
 - Rolando Fracture
 - T, Y or 3 part intra-articular fracture
 - CT for good visualization
 - Displaced fractures (>2mm?)
 - Open reduction/internal fixation
 - Dorsal approach
 - Wagner approach
 - K wire, screws, Ex Fix, Locked plate and condylar plate fixation
 - Bone graft
o Thumb MCP Ulnar collateral ligament injuries
 • Ulnar collateral ligament (most common)
 o Rupture
 1. Partial or complete
 • Physical exam
 o Test at 0 and 30 deg of MP flexion
 o Palpate for Stener lesion
 o Compare to opposite side for radial and ulnar deviation and endpoint
 ▪ > 40 degrees suspicious for complete tear
 • Stress Xrays???
 • MRI
 o Evaluate for Stener lesion or complete tear and associated injuries (capsule, EPB, RCL)
 o Avulsion fracture
 1. Size
 2. Displacement, articular incongruity
 3. Nondisplaced – cast
 Some controversy…verus
 4. Closed reduction and pinning with cast
 5. Open reduction, internal or perc fixation
 o Fractures and avulsions can occur together!

Techniques - Closed Reduction of Shaft Fractures:
 • Relax the intrinsics with flexion of the MCP
 • In general - Traction, accentuate the deformity and then reverse the deformity.
 o Irreducible fractures are usually due to interposed soft tissue
 • Check clinical alignment and rotation.
 o Flexion and extension
 o Axial plane of the fingernails when the finger cannot be flexed.
 • Buddy tape with the MCP flexed and IPs extended
 o Obtain films to evaluate reduction, splints may then be applied
 • Close f/u (weekly) to evaluate for maintenance of the reduced position and to begin motion by 3-4 weeks.
Open Reduction: Approaches to the Metacarpals and Phalanges

Metacarpal
 - Dorsal
 - Incision is standard although exposes tendons to scarring
 - Lateral
 - Incision may be used for index and small finger – keeps implants and scar away from extensor tendons

Phalangeal
 - Dorsal
 - Extensor tendon splitting
 - Advantage - good visualization
 - Disadvantage – direct scarring to the extensor tendon
 - PIP exposure for articular (especially unicondylar) fractures is through a central slip-lateral band splitting approach
 - Lateral
 - Midaxial or midlateral incisions
 - Approach through, around, or with excision of part of the lateral band
 - Advantage – may minimize scar, allows access for condylar or fixed angle plate
 - Disadvantage – may be more difficult to visualize fracture and work through this window
 - Volar
 - Brunner
 - Center at PIP flexion crease for access to PIP with retraction of flexor tendons
 - ORIF coronal volar lip fractures
 - Volar plate arthroplasty etc.

Implants or Fixation for Metacarpal and Phalangeal Fractures:
 - Kirschner wires (K wires) – simple, available, cheap, versatile
 - Internal splint, minimal or no compression
 - Two crossed wires should not intersect at the fracture
 - Two wires required for rotational control
 - Stability is related to:
 - number of K wires
 - arrangement of wires relative to the fracture,
 - diameter of the K wires
 - Fracture must be reduced (and compressed) prior to pin fixation
 - K Wire perpendicular to the fracture plane best resists bending, torque and distraction with oblique/spiral fracture
 - K wire perpendicular to the long axis of the bone best resists longitudinal shortening in oblique/spiral fractures.
 - K wire reduction forcep is a valuable tool
• Stainless wire (26-28 Gauge)
 o 90:90 intraosseous wiring
 o tension band with K-wires
 o cerclage wire
• Screws
 o Provide compression
 o Modular/ headless/ cannulated
 o Strength proportional to minor diameter
 o lag screw – most compression perpendicular to the fracture plane
 ▪ resists longitudinal force best when perpendicular to the long axis of the bone
• Plates
 o Bending strength proportional the cube of its thickness and inversely to the cube of the length.
 o Provide stability and allow early motion
 o Four cortices (2 bicortical screws) on each side of the fracture for phalangeal fractures is advisable
 o Allows compression with eccentric screw placement
 o Stainless or Titanium
 ▪ Titanium may stress shield less
 o Condylar plates, T-plates, compression plates, H plates
 ▪ Conventional screws
 o Small locked plates – fixed angle implant
 ▪ Preserve periosteum, stable fixation especially with small or osteoporotic bone
 o Plates have been associated with complications in up to 36% of fractures
 ▪ Stiffness, nonunion, plate prominence, infection and tendon rupture
 • However, those fractures with more stiffness were usually open phalangeal fractures; plate or injury?
• Intramedullary (IM) nails, or rods, or K wires
 o Most well suited for transverse or short oblique fractures
• Bioabsorbable implants
 o Evolving role, no routine implants at this time
 o Plates, pins, screws
 o Similar dissection for application
• External fixation
 o Applied in midaxial or dorsal midline plane to minimize tendon scarring
 ▪ dorsal midline may be best secondary location
 o Phalangeal fixators systems
 ▪ Multiple K-wires with PMMA filled syringe
Putting it all together, some examples -

Distal Phalanx

- **Tuft**: Most common, few deforming forces
 - Subungual hematoma:
 - >50% suggests nailbed laceration
 - Controversy – some literature shows no significant improvement with nail removal and repair (Roser 1999).
 - Displaced nail plates should be removed and the nailbed repaired with absorbable suture
 - Requires splint at DIP and MOTION at PIP
 - Sensory problems may persist; desensitization may help.
 - Fibrous union is common and usually asymptomatic

- **Shaft**: Transverse, Longitudinal, Comminuted – higher energy injuries: crush or saw
 - Open injuries or those with nail plate avulsion require irrigation and debridement, stabilization (K wire or nail plate) and nailbed repair with attention to the germinal and sterile matrices
 - Seymour fracture or displaced fractures with nail avulsion or displacement may require reduction and K wire fixation if the reduced nail plate does not provide enough stability.

Middle Phalanx Fractures

- **Shaft**
 - Transverse
 - IM or crossed K wires
 - Try to spare DIP and PIP joints and peri-articular soft tissue
 - Trans-articular for small distal middle phalanx neck fractures
 - Oblique/Spiral
 - Percutaneous reduction/compression with K wire reduction forcep
 - Multiple transverse K wires (perpendicular to fx and/or shaft)
 - May use threaded K wire to minimize gapping
 - Open or percutaneous lag screws
 - Comminuted/Segmental
 - K wires
 - Ex Fix
 - Multiple K wires
 - Transverse or oblique “fragment to fragment”
Proximal Phalanx Fractures

- Shaft
 - Transverse
 - IM or crossed K wires
 - Antegrade, retrograde and transarticular
 - MP should be flexed if wire goes across the joint
 - Oblique/Spiral
 - Percutaneous reduction and compression with K wire reduction forcep
 - Multiple transverse/oblique K wires
 - May use threaded K wire to minimize gapping
 - Open or Percutaneous reduction and fixation with lag screws
 - Lag screws alone are sufficient once the fracture plane is longer than twice the diameter
 - Short oblique/spiral – may require additional support: K wires or plate
 - Comminuted/Segmental
 - K wires
 - External fixator
 - Condylar blade plate - lateral approach
 - Dorsal plate – dorsal tendon splitting approach

Rehabilitation and Postoperative care

- Elevation and compression to minimize edema
- Mobilize other fingers and joints
- Splint to protect the finger or hand
- Cannot wait for radiographic obliteration of fracture planes for phalanx fractures, by 4 weeks active motion should begin in most cases

Pearls:

- Always examine the other hand before you start
- Mark the midaxial line prior to percutaneous fixation (wires placed above this are in a safe zone)
- K-wire reduction forcep is a great tool, needles can also help to direct wires and protect soft tissue.
- Oscillation feature on the K-wire driver can help minimize soft tissue injury.
- Minimize trauma to the tendons and soft tissue
- Make sure you move them…by 4 weeks
- Be satisfied with your reduction and fixation before you leave the OR
- Fracture pattern, soft tissue injury, and surgeon preference or experience must guide the surgical approach and choice of implant.
References

43. Tencer AF, Johnson KD, Kyle RF, Fu FH: Biomechanics of fractures and fracture fixation. Instr Course Lect 42:19, 1993
46. Trigg, S. Fractures of the Metacarpals and Phalanges. AAHS Review 2005